Utilization of Unmanned System Technology in Transportation Engineering

Dr. Michael R. Williamson
Assistant Professor
Indiana State University
Overview

- Unmanned Systems
 - Laws
 - Capabilities
 - Future
- Transportation Engineering Uses
 - Parking Study
 - Accumulation Graphs
 - Cost Effectiveness
Unmanned Systems
Unmanned Systems

- Fleet at ISU
 - Phantom 4 Pro
- Capabilities
 - Flight time 28 minutes
 - Max Service Ceiling 20,000 feet
 - Max Wind Speed Resistance 22 mph
 - Programmable flight paths
 - Range over 4 miles
 - Object tracking
- Cost of each drone
 - $3000 to $5000
Federal Aviation Administration

- Small Unmanned Aircraft Rule (Part 107), 21 June 2016
- Visual Line-of-sight (VLOS) only
- Maximum altitude of 400 feet above ground level (AGL)
- Minimum visibility of 3 statute miles
Federal Aviation Administration

- Air Traffic Control (ATC) permission required in Class D airspace
 - Airports that have an operating air traffic control tower
 - Notification is required when operating inside 5 statute miles
- Require a part 107 certification for operating in a controlled airspace
- Airspace Authorization
 - Available through internet request
 - 3-4 month wait
- Must yield right of way to other aircraft
Federal Aviation Administration

- Requires Preflight inspection prior to every flight
- No operation over moving vehicles
- May not operate over any persons
- Restrictions may be lifted in near future
Local Restrictions

- Must notify University Police
- Must follow FAA flight rules
Unmanned Uses Within Limitations

- Parking
 - Inventory
 - Accumulation/Occupancy
- Before and after traffic queues
 - Signal timing
 - Other improvements
- Work zone
 - Inspections
 - Traffic monitoring
Parking Study Objectives

- Parking inventory
 - Count the number of spaces in each lot

- Parking accumulation
 - One hour increments on all campus lots
 - Use unmanned systems if possible to collect data
 - Compare cost of traditional vs. unmanned system
 - Create bar graphs showing parking trends in each campus lot vs capacity
Indiana State University

- Terre Haute, Indiana
 - 60,000 Residents

- Indiana State University
 - Enrollment 14,000
 - Campus 435 acres
 - 5 Colleges
 - 30 parking lots
 - 1 parking garage
Campus Map
Parking Inventory

- Determine spaces on campus by type
 - Regular Spaces
 - Handicapped
 - Parking Meters
 - Service
 - Motorcycle
Parking Inventory with Unmanned Systems

- Count in off peak times
- Striping and signage visible
Parking Lots

- 6 Staff
 - 740 Total Spaces
 - 691 Regular
- 6 Student
 - 960 Total Spaces
 - 921 Regular
- 10 Staff/Student
 - 1594 Total Spaces
 - 1552 Regular
- 8 Remote
 - 1605 Total Spaces
 - 1587 Regular
- 1 Parking Garage
 - 590 Total Spaces
 - 572 Regular
- Total Spaces 5498
Parking Inventory Results

- Discrepancies
 - Most lots were off by 2 to 5 regular spaces
 - No accurate count for several years
Parking Accumulation

- Defined: total number of vehicles parked at any given time
- Establish the distribution of parking accumulation over time
- Determine the peak accumulation and when it occurs
- Determine space availability
- Collect vehicle occupancy each hour
- Due to the nature of arrival patterns
 - 7:30 am to 3:30 pm
 - Class schedule
 - Faculty hours
Parking Accumulation

- Preliminary Analysis
 - Always open spaces
 - Handicapped
 - Parking Meters
 - Service
 - Motorcycle
 - Spaces full
 - Regular Spaces
Drone Data
Parking Garage

- Not accessible via drone
- Manual counts
Cost Effectiveness

- **Wages**
 - $12 per student

- **Hours**
 - Large lots require full day counts
 - Drone capture multiple lots per flight

- **Drone Cost**
 - $3000
Cost Effectiveness

<table>
<thead>
<tr>
<th>Method</th>
<th>Hours</th>
<th>Weeks</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Method 4 Students</td>
<td>512</td>
<td>12.8</td>
<td>$6,144.00</td>
</tr>
<tr>
<td>Drone Study Student</td>
<td>40</td>
<td>1</td>
<td>$3,480.00</td>
</tr>
</tbody>
</table>

Drone Study reduced cost by 56.7 percent or 92.2 percent when cost of drone is recouped.
Lesson Learned

- Labeling the pictures
 - Date
 - Time
 - Parking lot(s)
- Multi lots per picture
 - Reducing flights
- Sun angles
 - Shadows
 - Glare
- Drone capabilities
 - Battery efficiency
 - Data storage
- Weather
 - Including wind
Deliverable

- Accumulation graphs
- All parking lots on campus
- Assist travelers in choosing parking based on time of day
Bar Graphs

FACULTY/STAFF LOT 15

Spaces Occupied

- 7:30 A.M.
- 8:30 A.M.
- 9:30 A.M.
- 10:30 A.M.
- 11:30 A.M.
- 12:30 P.M.
- 1:30 P.M.
- 2:30 P.M.
- 3:30 P.M.

Regular Spaces
Capacity
Bar Graphs

STAFF/STUDENT LOT A

Spaces Occupied

- Regular Spaces
- Capacity
Bar Graphs

STUDENT LOT 24

Spaces Occupied

Regular Spaces
Capacity
Bar Graphs

PARKING GARAGE

Spaces Occupied

- Regular Spaces
- Capacity
Future use with Software

- OpenALPR
 - Plate detection system
- Compatible with most cameras
- Create flight plan to collect data
 - Issue tickets as necessary
- Conduct studies on:
 - Duration
 - Turnover rate

<table>
<thead>
<tr>
<th>id</th>
<th>Lot</th>
<th>Plate_Number</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>CE MW 1</td>
<td>78.48</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>NR 1967</td>
<td>74.51</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>KE 4932</td>
<td>86.46</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>TKY 3939</td>
<td>78.54</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>BCEM 29</td>
<td>95.45</td>
</tr>
</tbody>
</table>
Contact Information

- Michael R. Williamson Ph.D.
 - Assistant Professor, Dept. of Civil Engineering, Indiana State University, Terre Haute, IN 47809 Phone: 217-343-7512; email: michael.williamson@indstate.edu