Traffic Engineering for Optimal BRT and TSP Success

District 10 / FSITE Annual Meeting 2018

PLANGINEERING
Integrating Planning with Engineering for a Better Community

October 31, 2018
Agenda

• Introduction
• Challenges
• Solution Process
• Traffic Engineering Decisions
• Case Study
• Results
About Presenter

Mark Yedlin

• PI of 1981 FHWA research on TSP
• 21 TSP projects since 1997
• Traffic engineering consultant for NYCDOT city-wide TSP since 2011

GPI:
• Full service Engineering Firm
• Staff of 1500 in over 40 US offices
• 8 offices in Florida
BRT Features

- **Exclusive ROW**
- **Pre-Payment**
- **Bus Signal Priority**
- **Passenger Info**
- **Stations**
- **Branding**
What is TSP?

Real Time signal adjustments to expedite buses:

- Extend Green
- Early Green
- Advance Green (Queue jump)
Why TSP?

- Reduce Travel Time
 - Reduce Variability
 - Maintain Schedule
 - Increase Ridership

- Reduce Operating Costs
Why BRT and TSP?

- Reduce Travel Time
 - Reduce Variability
 - Maintain Schedule
 - Increase Ridership
 - Reduce Congestion
- Reduce Operating Costs
- Improve Mobility

- Reduce Operating Costs
 - Reduce Variability
 - Maintain Schedule
 - Increase Ridership
 - Reduce Congestion
- Improve Mobility

Why BRT and TSP?
The devil is in the details

- Can you see it?
- Now?
We work in the realm of the devil

• Lots of details!!

• Many pitfalls
 − Political
 − Institutional
 − Technical
 − Many voices and choices

• Decisions influence success
Keys to Success

• Start small think big!
• Find a champion!
• Bring agencies together
• Communicate x 3
• Know what’s needed
• Understand constraints
• Address bottlenecks
• Good traffic engineering!!
Start Small – Think BIG

- Pick pilot to succeed
 - Opportunities for improvement
 - Reasonable cross street volumes

- Keep eye on the future
 - Anticipate full roll-out
 - Plan system wide policies, hardware
Find a Champion!

- Lead process
- Take responsibility
- Shepherd agencies to consensus
- Keep pushing!!
Bring Agencies Together

• Department of Transportation
• Transit Agency
• Consultants
• Multiple staff in each

• Recognize different:
 − Priorities
 − Agendas
 − Responsibilities
 − Cost/Benefit realities
Communicate, Communicate, Communicate!

- Throughout process
 - Objectives
 - Policies
 - Design
 - Implementation
 - Acceptance testing
 - On-going operations

- Even within same agency!
What are the constraints?

• Cross street traffic
• Pedestrians, seniors
• Capacity
• Coordination
• Bus stops
• Other corridor traffic
How should it work?

- Primary objectives?
- Conditional, Unconditional TSP?
- Coordination?
- Transition?
- Competing calls?
- How soon to accept next call?
- Door switches?
What do we have to Decide?

- What timings/offsets?
- Which intersections?
- What phases?
- How much time?
- When to act?
- Which call?
- Queue jumps?
- What are effects?
- Is it worth it?

Simulation invaluable!
Why simulate?

- Answer implementation decisions
- Accurately represent all traffic
- Determine savings for buses
- Determine effects on others
- Examine tradeoffs
- Optimize system
- Public outreach
- Justify funding!!!
Case Study: TSP in NYC

- Wall Street Financial District
- 2nd highest passenger loads in city
- Intermodal route
- Lots of pedestrians, bicycles
- Unloading trucks
- Congested
- Coordination
- Canyon for GPS signal
- Success unlikely!
Comparing Bus Operations With and Without TSP

Without TSP

Active TSP

Intersections Crossed: 0
Next:
Time saved to last intersection: 30:25:67981110121314151617181941

Allen / Stanton
Allen / Rivington
Allen / Delancey
Allen / Broome
Allen / Grand
Allen / Hester
Allen / Canal
Allen / Division
Pike / E. Broadway
Pike / Henry
Pike / Morris
Pike / Park Row
Pike / Pearl
Pike / Pearl South
Pike / Pearl Street
Pike / Pearl Street South
Pike / Park Row
State / Peter Minuit
Water / 55 Water
Water / Coenties Slip
Water / Broad
Water / Whitehall
State / Peter Minuit
Water / Fletcher

Early return to green
Extended green
Results: Win-Win!

- Lowered Bus Travel Time
 - Up to 18.4%

- Reduced Delay for Other Traffic
 - Side streets improved too!
 - Side street delay: 3.2 to 10.3%
 - Peak hour delay for corridor: 12.4 to 15.1%
 - Peak hour delay for all traffic: 8.3 to 11.9%

- Lowered Variability
 - Improved reliability
Traffic Engineering for Optimal BRT and TSP Success

840 intersections
92 miles

- Victory Boulevard: S61, S62, S66, S91 Limited, S92 Limited
 - 33 intersections
 - 5.7 miles

- Hylan Boulevard: S79 SBS
 - 69 intersections
 - 14 miles

- South Brooklyn Crosstown:
 - B82-LTD
 - 125 intersections
 - 10.2 miles

- South Bronx Crosstown:
 - Bx6
 - 49 intersections
 - 6.0 miles

- 125th Street & Astoria Boulevard:
 - M60 SBS
 - 63 intersections
 - 6.8 miles

- Lower Manhattan:
 - M15 SBS
 - 34 intersections
 - 2.2 miles

- Webster Avenue: Bx41 SBS
 - 67 intersections
 - 5.3 miles

- Main Street & Kissena/Parsons Boulevard:
 - Q44, Q25
 - 53 intersections
 - 5.0 miles

- Hillside Avenue:
 - Q43
 - 40 intersections
 - 3.3 miles

- Merrick Boulevard:
 - Q5
 - 26 intersections
 - 3.6 miles

- Utica Avenue:
 - B46 SBS
 - 65 intersections
 - 5.7 miles

- Nostrand Avenue:
 - B44 SBS
 - 33 intersections
 - 4.3 miles

- Woodhaven Boulevard:
 - Q52/Q53 SBS
 - 125 Intersections
 - 15.5 miles

TRANSIT SIGNAL PRIORITY PROJECTS IN NEW YORK CITY
Traffic Engineering for Optimal BRT and TSP Success

Keys to Success

• Find a champion!
• Bring agencies together
• Communicate!!!
• Know what’s needed
• Understand constraints
• Address bottlenecks
• **Simulation and good traffic engineering!!**
Questions?

Mark Yedlin
Director of Simulation Modeling Services
Greenman-Pedersen, Inc. (GPI)
myedlin@gpinet.com

Thank you!